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Ultrasonic evaluation of elastic parameters of 
sintered powder compacts 
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The variation of elastic moduli, M, of sintered powder compacts with porosity, p, has been 
analysed in terms of an equation M = Me (1--p)n, where Me is the elastic modulus of non-porous 
material and n is a constant. The variation of ultrasonic velocities has also been described in terms 
of a similar equation derived from the relations given by physical acoustics theory. It hasbeen 
shown that the parameter n is related to a stress concentration factor around pores in the material 
and is dependent on pore geometry and its orientation in the material. The observed variation in 
moduli and velocities with porosity has been compared with the theoretically predicted values 
based on self-consistent oblate spheroidal theory. 

1. I n t r o d u c t i o n  
Ultrasonic characterization of sintered powder metal 
parts and ceramics has long been of high interest and 
a number of such studies has been reported in the 
literature [1-4]. These studies usually involve 
measurements of ultrasonic velocities in materials and 
evaluation of the elastic properties. Because ultrasonic 
velocity is a relatively simple measurement that re- 
quires the material specimen ,to have one pair of sides 
fiat and parallel, it provides an attractive method for 
non-destructive evaluation of material properties at 
different stages of fabrication as a means of quality 
control of the final product. In a review [5], Roth et al. 
have analysed the possible potential of this method in 
estimating the porosity fraction in polycrystalline ce- 
ramic and metallic materials and concluded that a re- 
lation of the type 

V = V o ( 1 - p )  (1) 

describes the variation of ultrasonic velocity, V, with 
porosity, p, best. Vo is the velocity of non-porous 
material. On the other hand, in other studies [3, 4], it 
has been shown that relations of the type 

M = mo exp ( -  ap) (2) 

and 

m = mo exp [ - (ap + b p 2 ) ]  . (3) 

provide the best fit to the experimental data on elastic 
modulus. In these relations, M is the Young's or shear 
modulus (E or G); a and b are empirical constants. The 
subscript 0 refers to zero porosity values. According to 
physical acoustics theory, elastic moduli and ultra- 
sonic velocities are related by 

E (1 -- v) 7 Iz2 
V1 = -9 (1 + v)(1 - 2v)] 

Vs = (G/p) a/2 

where VI and Vs are 

(4) 

(5) 

longitudinal and transverse ultra- 

Chapman & Hall 

sonic velocities, respectively, v is Poisson's ratio, and 
p is the density. Thus if Equation 1 is used to describe 
the velocity-porosity relation, Equations 4 and 
5 show that a third-degree polynomial should be used 
for moduli-porosity relation. Conversely, Equa- 
tions 3, 4 and 5 dictate that an exponential relation 
should provide the best description of velocity-poros- 
ity data. Also, for sintered industrial clay ceramics, the 
values of Vo obtained by Panakkal [4] by fitting 
experimental data to Equation 1, differed by as much 
as ~ 30% from those calculated from zero-porosity 
moduli values which were obtained by fitting Equa- 
tion 2 to empirical data. Thus, it is apparent that 
inconsistencies exist in the relations that have been 
used in analysing the ultrasonic data on sintered pow- 
der compacts. In this paper we address this issue, 
utilizing the data reported by Panakkal et al. [3] on 
sintered iron powder compacts. 

Furthermore, previous studies [3, 4] have com- 
pared the experimental data with the theoretical 
values based on elastic theory [6-8] and the self- 
consistent scattering theory [9]. For sintered clay ce- 
ramics [4], both the theories grossly overestimated 
the value over the entire range of porosity under 
investigation. For sintered iron powder compacts [3], 
scattering theory provided better agreement than the 
elastic theory but for both the theories deviations from 
the theoretical values increased as pore volume in- 
creased. This was attributed to non-sphericity of the 
starting powder, the irregular stacking pattern of the 
initial powders compared to the simple cubic pattern 
assumed in the theory, and the non-sphericity of pores 
at higher porosities. This issue is also analysed in this 
paper, based on the self-consistent oblate spheroidal 
theory. 

2. Data analysis 
The data used in this analysis are those reported by 
Panakkal et al. [3] for hot isostatically pressed and 
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sintered iron compacts. They measured the ultrasonic 
velocity (longitudinal and transverse) and evaluated 
the elastic moduli and Poisson's ratio of compacts as 
a function of porosity (up to 21.6%). They analysed 
the moduli-porosity data in terms of Equations 2 and 
3 and the equation given by Hashin [10]. Equation 3 
provided best fit to their data, yielding zero-porosity 
Young's and shear moduli values as 207 and 80 GPa, 
respectively. These values agree well with the respect- 
ive Young's and shear moduli values of 212 and 
82 GPa of electrolytic iron. They did not analyse the 
variation of velocity with porosity. 

Equation 3 is an extension of Equation 2 proposed 
by Wang [8]. He has shown that Equation 2 holds 
good only up to a porosity range of 20%, and the 
modification proposed by him extends its validity up 
to a porosity range of 30%. However, both these 
equations suffer from the drawback that they do not 
satisfy the boundary condition of the physical phe- 
nomenon it represents, i.e. M = 0 at p ~< 1. Because of 
this, use of these equations to evaluate elastic moduli 
of theoretically dense material by extrapolation from 
fitted experimental data has sometimes resulted in 
large discrepancies between the extrapolated and ob- 
served values [11, 12]. Soroka and Sereda [12] have 
studied the porosity dependence of gypsum over two 
different porosity ranges, 0.11 ~<p ~< 0.3 and 
0.49 ~< p ~< 0.70, using Equation 2 and obtained 
values of Eo differing by one order of magnitude. To 
resolve this problem, Phani [13] has shown that a re- 
lation of the form 

M = M o ( 1 - p ) "  (6) 

where n is an empirical constant, can describe the data 
over the entire range of porosity. We use the same 
relation to analyse the data here. 

Equation 6 was fitted to both Young's and shear 
moduli data by non-linear regression analysis follow- 

220 

17(~ 

13. 
132 

O3 

0 
E 
o 8 8  4.o 
O3 
rn 

44 

0 , I I I 
0.00 0.06 0.12 0.18 0.24 0.30 

Pore volume fraction 

Figure 1 Variation of elastic moduli with pore volume fraction. 
( - - )  Equations 8 and 9, ( . . . )  derived equations (19) and (20). (El) 
Young's, (~>) shear moduli. 

ing the method of Lewis [14]. The sum of squares, Q, 
was used as the measure of the goodness of the fit 
between the fitted equation and data 

Q = 1-  i (Mi- #I~)2/ ~ (M,- j~/i)2 (7) 
i=1 / i=1 

where ]V/~ is the value calculated from the fitted equa- 
tion for appropriate p value, M~ and ~/i are the meas- 
ured values and mean value, respectively. For good fit, 
Q ~> 0.95, for Q < 0.9 the fit is poor. The equations 
that fit the data are 

Young's modulus, E(GPa) = 216.2(1 - p)3.131 (8) 

shear modulus, G(GPa) = 83.4(1 - p)Z.S77 (9) 

with Q values of 0.953 and 0.952 for Young's and shear 
moduli, respectively, indicating a good agreement be- 
tween the fitted equations and the data. The zero 
porosity moduli values are also in close agreement 
with the values of 212 and 82 GPa for Young's and 
shear moduli of electrolytic iron, respectively. The 
fitted equations, together with the data, are shown in 
Fig. I. 

If we combine Equations 4 and 5 with Equation 6 
and use the relation 

P = p 0 ( 1 - p )  (10) 

where 9o is the theoretical density, ultrasonic velo- 
city-porosity relations are given by 

V1 = V01(1 - p)~,-1)/2 
= V o l ( 1 - - p )  m (11) 

Vs = Vos(  1 _ p) (n t -1 ) /2  

= V,(1 - p )" '  (12) 

where m = (n - 1)/2, ml = (nl - 1)/2 and 

Vol = [O Eo(1-Vo) I 1/2 
o (1 + Vo)(1 + 2Vo) (13) 

Vos = (Go/Po) 1/z (14) 

It may be noted that in deriving Equation 11, we have 
neglected the variation of Poisson's ratio, v, with por- 
osity. 

Using v0 = 0.297 and 90 = 7.8 gcm -3 and substi- 
tuting values of Eo, Go, n and nl from Equations 
8 and 9, in Equations 11-14 we obtain 

VL(mml.ts -1) = 6.14(1 - p ) 1 . 0 6 6  (15) 

Vs(mm~ts -1) = 3 . 2 7 ( 1 - p )  ~ (16) 

These equations are plotted in Fig. 2, showing fair 
agreement with the data. Also, the zero porosity lon- 
gitudinal and shear velocity values of 6.14 and 
3.27 mm p. s- 1, agree well with the values of 6.02 and 
3.24 mm g s-1, calculated from the moduli values of 
electrolytic iron, respectively. 

Conversely, if we start with the relations given by 
Equations 11 and 12 and fit to the velocity pore 
fraction data, it yields relations 

Vl (mmgs  - t )  = 6.07(1 - p ) 1 . 4 5 9  (17) 

Vs(mmgs - t )  = 3.29(1 - p)1.1o2 (18) 
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Figure 2 Variation of ultrasonic velocity with pore volume fraction. 
( - - )  Equations 17 and 18, ( ... ) derived equations 15 and 16. ([]) 
longitudinal, (~>) Shear moduli. 
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Figure 3 Elastic moduli against pore volume fraction. ( - - )  Theor- 
etical curves for ~ = 0.273�9 (if]) Young's; (B>) shear moduli. 

with Q values of 0.940 and 0.943 for longitudinal 
transverse velocity, respectively. These equations are 
also plotted in Fig. 2, showing good agreement with 
the data. Equations 4, 5 and 10 can again be used to 
derive the moduli-porosity relation from the fitted 
Equations 17 and 18. This gives the relations 

E(GPa) = 215.64(1 - p)3.918 (19) 

G(GPa) = 84.65(1 - p)3.2o3 (20) 

These equations are again plotted in Fig. 1 showing 
fair agreement with the data. Thus, Equations 6 and 
11 not only explain the variation of elastic moduli and 
ultrasonic velocity with pore volume fraction but are 
also consistent with the relations derived from phys- 
ical acoustic theory. 

The variations of Poisson's ratio with the pore 
volume fraction can be derived from Equations 8 and 
9 using the relation 

v = E / 2 G -  1 (21a) 

giving 

v = 1.297(1 -p)~ _ 1 (21b) 

Expanding the first term on the right-hand side bi- 
nomially and neglecting terms of order higher than p, 
the equation reduces to 

v = 0.297(1 - 1.11p) (22) 

Equation 22, together with the measured values of 
Poisson's ratio, are presented in Fig. 4. The Q value 
works out to be 0.519, showing poor agreement be- 
tween the predicted equation and the data. This is to 
be expected, considering the fact Poisson's ratio is 
a small quantity dependent on the differences of the 
other elastic properties and is very sensitive to errors 
in them. 
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Figure 4 Variation of Poisson's ratio with pore volume fraction. 
(-..) Equation 22, ( - - )  theoretical curve for ~ = 0.273. 

3. Theoretical predictions 
Panakkal et  al. [3] compared the elastic moduli data 
with the theoretically calculated values based on 
elasticity and scattering theories [6-9]. Although the 
variation of the moduli as a function of porosity was 
in good agreement with the theory (the slopes), the 
agreement between the theoretical values and data 
was not good. Of the two theories, the behaviour 
predicted by the self-consistent scattering theory was 
close to the experimental observation compared to 
elasticity theory. This was mainly attributed to the 
non-spherical nature of pores which was evident from 
the photomicrographs given in their paper. To the 
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best of our knowledge, the only theory that has been 
used to account for the effect of non-sphericity of 
pores on elastic moduli is one based on the self-consis- 
tent oblate spheroidal theory [15]. Dean [15] used the 
self-consistent scheme (SCS) given by Wu 1-16] and, 
considering the pores to be oblate spheroids, fitted 
both the measured Young's modulus and shear 
modulus versus porosity data to theory using sphe- 
roid aspect ratio as the only variable. 

For porous material, Wu's [16] SCS theory gives 
the effective bulk modulus, K, and shear modulus, G, 
as 

K = Ko[1 -- pPo(ct, R)] (23) 

G = Go[1 - pQo(o%R)] (24) 

where Po and Qo are functions of the aspect ratio, 0~, of 
the spheroids, and R is defined as 

R = 3G/(3K + 4G) (25) 

Spheroids are characterized by the ratio of the minor 
axis to major axis, the aspect ratio, 0~. Spheroids for 
which ~ = 1 are spheres and as 0t approaches zero, 
oblate spheroids become disc-shaped and prolate 
spheroids become needle-shaped. Equations 23 and 
24 were fitted to the data following the method given 
by Dean [15]. The values Eo = 212.0GPa and 
Go = 82.0 GPa for electrolytic iron were used in the 
theoretical calculation. The experimental data, to- 
gether with the SCS oblate spheroidal theory with 

= 0.273 (solid lines), are shown in Fig. 3 for both 
Young's modulus and shear modulus. Agreement of 
experimental data with the theory was again worked 
out in terms of the sum of squares Q. It yielded values 
of 0.965 and 0.935 for Young's and shear moduli, 
respectively, showing excellent agreement between 
theory and experiment. 

As pointed out by Dean [15], a more sensitive test 
of the power of this theory is a comparison between 

6.50 
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the theoretical results for Poisson's ratio and the 
values of this isotropic elastic constant calculated 
from the measured values of E and G. This compari- 
son is shown in Fig. 4. The closeness of the calculated 
points to the theoretical curves is quite good. 

Theoretical velocity values were also computed 
from Equations 23 and 24 using relations 

V1 = [(K + 4/3 G)/O] ~/2 (26) 

V, = (G/p) ~/z (27) 

These values for an oblate spheroid of aspect ratio 
0t = 0.273, together with the experimental data, are 
shown in Fig. 5. Fig. 5 speaks for itself in terms of 
comparison between experiment and SCS oblate 
spheroidal theory. 

It may be mentioned here that spheroids of a single 
aspect ratio, = = 0.273, fit the data of a batch of 
sintered materials with individual members having 
large ranges of porosities. It is highly unlikely that all 
the pores will have the same aspect ratio. Thus, as 
shown by Dean [15], 0c should be considered as an 
"effective" aspect ratio which approximates the effect 
of a spectrum of aspect ratios. 

4. Discussion 
For p ~< 0.10, Equation 6 can be approximated to 

E = Eo (1 - rip) (28) 

Rossi [17] has shown, in that case, n is given by the 
stress concentration factor about pores in the mater- 
ial. He has also calculated the values of stress concen- 
tration factor as a function of aspect ratio of spheroids 
for both oriented and random orientation of pores in 
the material. For spherical pores, the stress concentra- 
tion factor is solely a function of the Poisson's ratio of 
the material and its value is equal to 2 for a Poisson's 
ratio of 0.2. For orientated oblate spheroidal pores the 
value can be approximated (for v = 0.2) by [17] 

5 3 
n = ~  + ~ (29) 
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Figure 5 Ultrasonic velocity against pore volume fraction. ( ) 
Theoretical curves for a =  0.273. (El) Longitudinal, (~) shear 
moduli. 

If we substitute the value of n from Equation 8, it gives 
(the small variation due to difference in Poisson's ratio 
is neglected) ~ = 0.525, which is almost twice the value 
obtainea from SCS oblate spheroidal theory. On the 
other hand, if the pores are considered to be randomly 
oriented, the value of ~ becomes equal to 0.283 (refer 
to Fig. 8 in [17]). This value is in good agreement with 
0~ = 0.273 obtained from SCS oblate spheroidal the- 
ory. Thus the exponent n can be associated with stress 
concentration about pores in the material and its 
value will be dependent on pore geometry and its 
orientation. 

For spherical pores, the value of n = 2. As ~ de- 
creases the value of n increases, and for random ori- 
entation of pores, n = 4 for ~ - 0.18 (Fig. 8 in [17]). 
Fig. 6 shows the relative moduli of 12 polycrystalline 
materials reported in the literature. These values lie 
in the range (1 - p)3 to (1 - p)4 with corresponding 
aspect ratio of randomly oriented oblate spheroids 
varying from 0.34).18. Equations 11 and 12 give the 
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Figure 6 Relative Young's modulus versus porosity for polycrystal- 
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Figure 7 Normalized longitudinal ultrasonic velocity versus poros- 
ity for polycrystalline materials. (@) MgO, (Ell) A1203, (O) por- 
celain, (E]) SiC, (A) Si3N4, (111) tungsten, (~)  UO2, (�9 
YBa2 Cu30(7-x). 

corresponding velocity relations as 

V = Vo (1 - p) (30) 

to 

v = Vo (1 - p ) , 5  (31) 

Fig. 7 shows the normalized velocity data of eight 
polycrystalline materials analysed by Roth et al. I-5]. 
Velocity values were normalized using the zero poros- 
ity velocity values given by Roth et al. [5]. They lie in 
the range ( 1 -  p)O.7 to  ( l -  p)2 and corresponding 

values of n are in the range 2.4-5. The dotted line 
shown in the figure corresponds to the linear Equation 
30 which has been used by Roth et al. [-5] in their 
review. On the other hand, if Equation 31 is approx- 
imated by a linear one for porosity values greater than 
0.20, it will tend to overestimate or underestimate the 
zero porosity value depending on the range of poros- 
ity over which the data are being fitted. 

Finally, Panakkal et al. [3] have suggested a linear 
relationship between moduli and velocity for lower 
pore volumes. This is also confirmed from the present 
study, because for lower pore volumes, Equations 6, 
11 and 12 can be approximated by linear equations, 
and the elimination of the variable, p, between them 
yields the desired linear relation. 

5. Conclusion 
Elastic moduli of sintered iron compacts as a function 
of porosity have been analysed in terms of an equation 
M = Mo(1 - p)". The constant n is the stress concen- 
tration factor due to the presence of pores in the 
material and is dependent on pore geometry and its 
orientation in the material. Variation of ultrasonic 
velocity with porosity is also described by a similar 
relation which is consistent with the theories of phys- 
ical acoustics. 

Theoretical predictions based on the self-consistent 
oblate spheroidal theory explained well the observed 
variation of the elastic parameters and ultrasonic 
velocities. Data analysis indicates that ultrasonic velo- 
city may be used to evaluate the elastic moduli of 
porous material. 
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